

Simulating Collision Avoidance by a Reactive Agent

Using VRML

by Andrew M. Neiderer

ARL-TR-3566 August 2005

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-3566 August 2005

Simulating Collision Avoidance by a Reactive Agent
Using VRML

Andrew M. Neiderer

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

August 2005
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

December 2004–February 2005
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Simulating Collision Avoidance by a Reactive Agent Using VRML

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

P622783.Y10
5e. TASK NUMBER

6. AUTHOR(S)

Andrew M. Neiderer

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
AMSRD-ARL-CI-CT
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3566

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Prototype nodes using the Virtual Reality Modeling Language (VRML) 2.0 standard have been developed for reactive, agent-
based route navigation within a three-dimensional synthetic environment. The agent has limited intelligence with the basic
constraint of noncollision by enforcing some minimal distance of approach to objects: this includes both static and moving
obstacles. Navigation is nontrivial since the location of the goal may be changing and the agent reacts accordingly. An
existing VRML model of a building was imported, and the subsequent exposedField interface for repulsion was defined.
Simulation of an agent within this context was then verified. An open source development using VRML encourages a “think
small, scale large” philosophy for a network of objects.

15. SUBJECT TERMS

collision avoidance, web-based visualization, interactive virtual reality

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Andrew M. Neiderer

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

30 19b. TELEPHONE NUMBER (Include area code)

410-278-3203
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

1. Introduction 1

2. VRML Basics 2

3. VRML Implementation 4

4. Conclusion and Future Efforts 5

Appendix. VRML Prototypes for Collision Avoidance Example 6

Distribution List 23

iv

List of Figures

Figure 1. An abbreviated list of VRML nodes. ..3
Figure A-1. Animation snapshot...8

1

1. Introduction

Urban operations, such as responding to a medical emergency or even a rescue operation
involving hostages, continue to increase as the world’s population congregates in central
locations. Rehearsal for these types of missions results in increased precision and speed. A
concern of the Tactical Collaboration and Data Fusion Branch at the U.S. Army Research
Laboratory (ARL) is preparing soldiers for military operations on urban terrain (MOUT) where
timing is critical for success. Recently we developed software that not only has application for
MOUT, but could also be used in simulation of collision avoidance in military operations other
than war.

A military rescue team, which usually includes dismounted infantry, needs to reach their target
as fast as possible. In the following discussion the term “agent” is used in the context of an
infantry soldier. The metric we chose for path selection is minimizing the distance from an agent
to the target with the basic constraint of noncollision. Collision avoidance is simulated by
defining a repulsion exposedField of a Virtual Reality Modeling Language (VRML) prototype
(PROTO) node for a particular object within the virtual environment (VE). A general restriction
is that an agent must obey the general integrity rule of gravity and cannot “step over” an
obstacle. There are other concerns of an agent such as minimizing exposure or minimal risk.
The optimal solution for a particular situation may be a combination of the above, or others. But
for now the maximum reward for a particular simulation is representative of straight path dashes
over short distances, which is typical of a dense urban environment. We also assume that the
agent knows the exact location of the target at all times, as if he sees it.

Operations in an urban environment can also be quite chaotic, and adjustments may be
necessary. In all cases, the agent should be reactive to both static and dynamic events that are
encountered along its selected path. For example, an existing structure may undergo an impact
from a munition either accidentally or intentionally for strategic reasons. A soldier may then
need to alter his route based on the resultant rubble, or possibly he observes an enemy patrol that
needs to be avoided. There is little time to analyze data in most circumstances, and often
decisions are based on reactions. Therefore, some deviation from the original plan will likely
occur, but our software agent always tries to minimize distance to the target from the current
location.

Note that an additional challenge in real-time simulation within an urban setting is the
approximation of complex phenomena such as the previously mentioned. We have developed a
physics-based algorithm for real-time display of munitions penetrating urban structures.1 We

1 Neiderer, A. M.; Thomas, M. A.; Pearson, R. A Fracturing of Polygonal Objects; ARL-TR-1649; U.S. Army Research

Laboratory: Aberdeen Proving Ground, MD, April 1998.

2

then developed software for the distribution of fragments resulting from such fractures.2
Maintaining a real-time response in our simulation work is a top priority.

This report presents an approach for collision avoidance by a reactive agent within a VE. First,
we provide an introduction to version 2.0 of VRML, hereafter simply referred to as VRML. Its
successor, the Extensible Three-Dimensional (X3D) modeling language, is an XML-encoding of
VRML that is being reviewed by the International Standards Organization for acceptance; it has
reached final draft but has not been officially standardized as of November 2004. X3D has some
additional features and may be a better solution, but we will wait and see if this language
becomes widespread as has VRML. Section 3 provides details of our application, with full
source code given in the appendix. It runs on both Microsoft Windows XP workstations using
the Cortona VRML client by ParallelGraphics, Inc. (http://www.parallelgraphics.com
/products/cortona/) or the VRML plug-in from Octaga, Inc. (http://www.octaga.com/), and Red
Hat Enterprise Linux microcomputers using the standalone VRML application FreeWRL
(http://www.crc.ca/FreeWRL/). Note that there is a VRML standalone for a personal digital
assistant (PDA), but we have not evaluated it (http://www.alphaworks.ibm.com/tech/mobile3d).
Finally, we conclude and suggest where further work should be done to make this a better
application.

2. VRML Basics

VRML is a Web-based technology for describing and delivering a three-dimensional (3-D)
interactive VE over the Internet. The standard defines over 60 primitives, called nodes, with a
capability of extension through user-defined PROTO nodes. A scene graph description of a VE
is a hierarchical organization of the possible nodes (see figure 1):

1. Shape node(s) for both a simple geometry and a general geometry, which is built using
actual coordinate values, including its appearance,

2. Light source node(s) to control lighting within the virtual world,

3. Grouping node(s) for allowing a collection of nodes to be defined and manipulated as one,

4. Sensor and interpolator nodes to allow for animation, and

5. Script node(s) for passing information between nodes by events along a defined ROUTE.

2 Neiderer, A. M.; Thomas, M. A.; Hansen, C. E. Distribution of Fragments Resulting From Polygonal Object Fracture;

ARL-TN-182; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, September 2001.

3

Figure 1. An abbreviated list of
VRML nodes.

VRML supports animation and user interaction of a 3-D VE through an event-driven model.
Every node has a field interface (field, exposedField) and an event interface (eventIn, eventOut).
A scene graph is made dynamic by receiving and sending events through the node event
interface. A ROUTE definition is used to specify the flow of events between nodes. ROUTE
wires an output event (eventOut) of a sensor node to the input event (eventIn) of an interpolator

Shape Node
 Geometry Nodes
 Box
 Sphere
 Cone
 Cylinder
 IndexedLineSet
 IndexedFaceSet
 Extrusion
 ElevationGrid
 Text
 Appearance Node

Light Source Nodes
 DirectionalLight
 PointLight

Grouping Nodes
 Group
 Transform
 Collision
 Switch
 LOD

Sensor Nodes
 TouchSensor
 ProximitySensor
 PlaneSensor
 TimeSensor

Interpolator Nodes
 OrientationInterpolator
 PositionInterpolator

Script Node

4

node, and then another ROUTE from this interpolator node to a transform node. In addition,
script nodes can be associated with Java or JavaScript for treating and modifying events.

Although VRML offers a compelling presentation of 3-D data and provides for an interactive
scene graph, it was not designed to explicitly support bi-directional network communication.
There are some roundabout ways of “pushing” and “pulling” data from the network. One
example is dynamic Web content created by using HTTP communication with Web services
such as JavaServer Pages technology.

Two networking improvements have been added to the proposed X3D standard to address the
above VRML shortcoming for a network of nodes: (1) the addition of a load field to the Inline
node so that an application can better control when assets are loaded, and (2) the definition of a
LoadSensor node so that an application can know when assets are loaded in order to be more
responsive.

When X3D becomes fully standardized and browser plug-ins become more widespread and
supported, we will re-evaluate our application in that context. It is even likely that VRML-to-
X3D translator(s) will be available to ease the transition if we choose to do so.

3. VRML Implementation

If a collision node(s) is not specified for a VRML scene, then the browser is responsible for
detecting collision of an agent with objects in the VE during navigation. The collision node is a
grouping node in the scene graph. Any geometric primitives within the group, i.e., MFNode
children of the exposedField interface, are collide-able assuming that the exposedField collide is
set to true. Because we wanted to avoid collision, not merely detect it, we created PROTOs and
used a VRML node developed by Peter Gerstmann3 at The Ohio State University:
AvoidObstacles.

The PROTO AvoidObstacles defines the initial position of the agent (exposedField position) and
the target (field goal); both are 3-D floating point vectors, i.e., SFVec3f. Also recall that both of
these fields are dynamic, and can change values over time as the agent reacts but continues to
avoid any obstacles along its path. All obstacles are also PROTOs and must have an initial
position and a repulsion value; the exposedField position is a 3D floating point vector; and the
larger the floating point value for repulsion, the larger the influence of the circular field.

Complete VRML code is given in the attached appendix. The main source
AvoidBuildingsAndObjectsExample.wrl includes the external prototype (EXTERNPROTO)

3 Gerstmann, P.; Building Games in VRML; The College of The Arts, The Ohio State University, May 2000.

5

declarations for the above nodes. Each additional obstacle must be declared and defined as
mentioned, and then added to the MFNode obstacles field of AvoidObstacles.

4. Conclusion and Future Efforts

ARL has developed VRML PROTO nodes for simulating route navigation of minimal distance
for a reactive agent within a VE consisting of both static and dynamic obstacles. The next step is
simulation within a more detailed and populated VE, representative of an urban environment,
using additional VRML nodes. We believe that this will be relatively straightforward since we
chose a language that is a standard for the representation of VR environments.

The Scenario Authoring and Visualization for Advanced Graphical Environment (SAVAGE)
project at the Naval Postgraduate School (http://web.nps.navy.mil/~brutzman/Savage/) in
Monterey, CA, has a rather large collection of military models developed in VRML/X3D.
Another archive of VRML nodes for urban model representation that are freely available exists
at http://www.int3d.com/. However, a VE consisting of N moving objects and M stationary
objects involves keeping track of ()N

2 +NM pairs of objects for each time interval.4 Therefore,

we must research intersection techniques further to reduce this computation if we want to
maintain interactive frame rates.

Another enhancement of this work would be the replacement of VRML primitive nodes for the
data definition of an agent. A possibility is a soldier representation of the agent, e.g., using
Discreet’s Character Studio, with motion-capture technology for movement within the VE.
Motion capture data typical of nuances of a soldier will include walking, running, taking cover,
rising from the ground, and communicating through hand signaling. We may then attempt to
replace the reactive capability of our agent in route navigation with some further intelligence,
perhaps based on cognitive maps.

4 Badawy, W. A.; Kelash, H. M. Collision Detection in VRML: A Survey; Emirates Journal for Engineering Research

2003, 8 (2).

6

Appendix. VRML Prototypes for Collision Avoidance Example

The following VRML code includes protoypes that define a primitive structure
(ObstacleBldg.wrl) and character (ObstacleGuard.wrl) to demonstrate collision avoidance of an
agent, which is described using primitive geometry also. The intent here is to define only single
static and a dynamic nodes within the VE, keeping it clutter-free for the agent so that we can
visually verify the VRML model. We now plan on adding more VRML nodes to approach
reality.

A.1 ObstacleBldg.wrl
#VRML V2.0 utf8

ObstacleBldg.wrl: ObstacleBldg node

description: obstacle prototype of a building

author: Andrew M. Neiderer
23 September 2004

PROTO ObstacleBldg [

 # field interface

 field SFVec3f size 4.0 4.0 4.0

 # exposedField interface

 exposedField SFVec3f position 0.0 0.0 0.0
 exposedField SFFloat repulsion 4.0
]

definition

{
 Transform {
 translation IS position
 children [
 Inline {
 url
"http://web.nps.navy.mil/~brutzman/Savage/Buildings/ErdcTwoStoryBuilding/Erdc
TwoStoryBuilding.wrl"
url "ErdcTwoStoryBuilding.wrl"
url "building_1.wrl"
 }
]
 }
}

7

A.2 ObstacleGuard.wrl
#VRML V2.0 utf8

ObstacleGuard.wrl: ObstacleGuard node

description: obstacle prototype of a guard

author: Andrew M. Neiderer
3 September 2004

PROTO ObstacleGuard [

 # field interface

 field SFFloat radius 1.0

 # exposedField interface

 exposedField SFVec3f position 4.0 0.0 7.5
 exposedField SFFloat repulsion 4.0
]

definition

{
 Transform {
 translation IS position
 children [
 Shape {
 appearance DEF RED Appearance {
 material Material {
 diffuseColor 1.0 0.0 0.0
 }
 }
 geometry Cylinder {
 height 1.0 radius 0.25
 }
 }
 Transform {
 translation 0.0 0.7 0.0
 children [
 Shape {
 appearance USE RED
 geometry Sphere {
 radius 0.20
 }
 }
]
 }
]
 }
}

8

A snapshot of the animation is given in figure A-1. The target is located inside the virtual
building. The blue figure, which is our software agent, tries to reach it as fast as possible by
entering through the doorway and avoiding all obstacles that are encountered along its route.
The red figure is representative of a guard patrolling the entrance of the building, moving west to
east and then reversing for the entire width of the building; the initial position and repulsion are
declared in the exposedField interface of the ObstacleGuard.wrl. The building is likewise an
obstacle for the agent with the exposedField interface given in ObstacleBldg.wrl. All actual
values are defined in AvoidBuildingsAndObjectsExample.wrl, which is the main VRML file.
The agent and its starting position are defined here, as well as any additional animation within
the VE.

Figure A-1. Animation snapshot.

A.3 AvoidBuildingsAndObjectsExample.wrl
#VRML V2.0 utf8

AvoidBuildingsAndObjectsExample.wrl

description:

author: Andrew M. Neiderer
23 September 04

9

xxx

EXTERNPROTO AvoidObstacles [

 # field interface

 field SFVec3f goal
 field SFFloat goalPriority
 field SFFloat speed
 field SFString state
 field MFNode obstacles

 # exposedField interface

 exposedField SFVec3f position
 exposedField MFNode children

 # event interface

 eventIn SFTime updateRequest
 eventIn SFVec3f set_goal
 eventIn SFString set_state
 eventIn MFNode set_obstacles

] "AvoidObstacles.wrl"

a building

EXTERNPROTO ObstacleBldg [

 # field interface

 field SFVec3f size

 # exposedField interface

 exposedField SFVec3f position
 exposedField SFFloat repulsion

] "ObstacleBldg.wrl#ObstacleBldg"

a guard

EXTERNPROTO ObstacleGuard [

 # field interface

 field SFFloat radius

 # exposedField interface

 exposedField SFVec3f position
 exposedField SFFloat repulsion

] "ObstacleGuard.wrl#ObstacleGuard"

10

xxx

EXTERNPROTO MetaData [

 # exposedField interface

 exposedField MFString instructions
 exposedField MFString name
 exposedField MFString description
 exposedField MFString interface

] "MetaData.wrl"

MetaData{
 name ["MetaData"]
 description [
 "descriptive info display for protos."
 "typically, protos present the user with an empty screen;"
 "by using a MetaData proto, you can provide helpful info"
 "and a printable interface."
]
 interface [
 "EXTERNPROTO MetaData ["
 " exposedField MFString instructions "
 " exposedField MFString name "
 " exposedField MFString description "
 " exposedField MFString interface "
 "] \"MetaDataPROTO.wrl\""
]
}

scene setup

Viewpoint {
 description "bird's eye view"
 position 0.0 33.5 0.027
 orientation -1.0 0.0 0.0 1.57
 jump FALSE
}

Viewpoint {
 description "on the level"
 position 0.0 19.388 27.32
 orientation -1.0 0.0 0.0 0.617
 jump FALSE
}

NavigationInfo {
 type "EXAMINE"
}

WorldInfo {
 info ["File produced by IMSI FloorPlan V4"]
 title "FP2StoryTextures.wrl"
}

NavigationInfo {

11

 type ["EXAMINE" "ANY"]
}

DEF VP_Z_POS Viewpoint {
 description "Front"
 position -1.8288 1.5 19.848103
}

DEF VP_Z_NEG Viewpoint {
 description "Back"
 orientation 0.0 1.0 0.0 3.141592
 position -1.8288 1.5 -20.457703
}

Viewpoint {
 description "View 1"
 position -4.8768 1.5 2.7432
}

Viewpoint {
 description "View 2"
 position -1.8288 1.5 -2.3622
}

Viewpoint {
 description "View 3"
 position 1.2192 1.5 2.7432
}

Viewpoint {
 description "View 4"
 position -4.8768 1.5 2.7432
}

Viewpoint {
 description "View 5"
 position -1.8288 1.5 -2.3622
}

Viewpoint {
 description "View 6"
 position 1.2192 1.5 2.7432
}

obstacles

DEF O1 ObstacleBldg {
 position 0.0 0.0 0.0
 repulsion 675.0
}

DEF O2 ObstacleGuard {
 radius 1.0
 position 9.0 0.0 0.0
 repulsion 25.0
}

12

for animation

DEF PI PositionInterpolator {
 key [0.0 0.33 0.66 1.0]
 keyValue [3.0 0.15 8.0, 5.0 0.15 8.0, -8.0 0.15 8.0, 3.0 0.15 8.0]
}

DEF TS TimeSensor {
 cycleInterval 10
 loop TRUE
}

target

Transform {
 rotation 1.0 0.0 0.0 -1.57
 children [
 DEF GOAL Transform {

position of target is outside the building
translation -15.0 -0.0 1.0

position of target is inside the building
 translation -4.5 -4.75 0.0

 children [
 Transform {
 translation 0.0 0.0 -0.25

 # scale, ie size of, target
 scale 1.5 1.5 1.0

 children [
 DEF CORNER Shape {
 geometry IndexedLineSet {
 coord Coordinate {
 point [-0.5 -0.25 0.0, -0.5 -0.5 0.0, -0.25 -0.5 0.0]
 }
 coordIndex [0 1 2 -1]

 # color of target
 color Color {
 color [0.0 0.0 1.0]
 }
 colorIndex [0 0 0 -1]
 }
 }
 Transform {
 rotation 0.0 0.0 1.0 1.57
 children [USE CORNER]
 }
 Transform {
 rotation 0.0 0.0 1.0 -1.57
 children [USE CORNER]
 }
 Transform {
 rotation 0.0 0.0 1.0 3.1415

13

 children [USE CORNER]
 }
]
 }
]
 }
]
}

floor

Transform {
 translation 0.0 -1.0 0.0
 rotation 1.0 0.0 0.0 -1.57
 children [
 DEF PS PlaneSensor {}
 Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.4 0.4 0.4
 }
 }
 geometry Box {
 size 24.0 24.0 1.0
 }
 }
]
}

Script node

DEF S Script {
 field SFNode g USE GOAL
 field SFNode p USE PS
 field SFVec3f offset 0.0 0.0 0.0

 eventIn SFVec3f set_pos
 eventOut SFVec3f goal_changed

 url ["javascript:
 function set_pos(pos)
 {
 var mv = offset.add(pos);

 goal_changed = new SFVec3f(mv.x,0.0,-mv.y);
 }
 function initialize()
 {
 p.set_offset = g.translation;
 set_pos(g.translation);
 }
 "]
}

chaser

DEF A AvoidObstacles {

14

 position 20.0 0.1 0.0
 goal -4.0 0.0 0.0
 speed 3.0
 obstacles [
 USE O1
 USE O2
]
 children [
 Shape {
 appearance DEF BLUE Appearance {
 material Material {
 diffuseColor 0.0 0.0 1.0
 }
 }
 geometry Cylinder {
 height 1.5 radius 0.35
 }
 }
 Transform {
 translation 0.0 1.0 0.0
 children [
 Shape {
 appearance USE BLUE
 geometry Sphere {
 radius 0.25
 }
 }
]
 }
]

 # animation

 ROUTE TS.time TO A.updateRequest
 ROUTE PS.translation_changed TO GOAL.set_translation
 ROUTE PS.translation_changed TO S.set_pos
 ROUTE S.goal_changed TO A.set_goal

 ROUTE TS.fraction_changed TO PI.set_fraction
 ROUTE PI.value_changed TO O2.set_position
}

A.4 AvoidObstacles.wrl
#VRML V2.0 utf8

AvoidObstacles.wrl: AvoidObstacles prototype

description: at each update request, the children node[s] are moved closer
(if chasing), or farther (if not chasing) from goal, avoiding
the obstacles in the obstacle list.

author: peter gerstmann
pgerstma@cgrg.ohio-state.edu
http://www.cgrg.ohio-state.edu

15

revised by: Andrew M. Neiderer
3 August 2004

notes: acknowledge Matt Lewis, whose Virtual Environments course
provided
the basis code for this PROTO.
http://www.cgrg.ohio-state.edu/~mlewis

PROTO AvoidObstacles [

 # field interface

 field SFVec3f goal 0.0 0.0 0.0
 field SFFloat goalPriority 2.0
 field SFFloat speed 1.0
 field SFString state "CHASING"
 field MFNode obstacles [] ## each obstacle must have
 ## exposedField SFVec3f position
 ## exposedField SFFloat
repulsion

 # exposedField interface

 exposedField SFVec3f position 0.0 0.0 0.0
 exposedField MFNode children []

 # event interface

 eventIn SFTime updateRequest
 eventIn SFVec3f set_goal
 eventIn SFString set_state
 eventIn MFNode set_obstacles
]

definition

{
 Group {
 children [
 DEF MOVER Transform {
 translation IS position
 children IS children
 }
 DEF SCRIPT Script {
 directOutput TRUE

 field SFVec3f goal IS goal
 field SFFloat goalPriority IS goalPriority
 field SFFloat speed IS speed
 field SFString state IS state
 field MFNode obstacles IS obstacles
 field SFNode mv USE MOVER
 field SFVec3f direction 0.0 0.0 1.0
 field SFTime lastBeat 0.0
 field SFBool first TRUE
 field SFFloat power 2.5

16

 field SFFloat wanderInc 0.25

 eventIn SFTime update IS updateRequest
 eventIn SFVec3f set_goal IS set_goal
 eventIn MFNode set_obstacles IS set_obstacles
 eventIn SFString set_state

 url ["javascript:

 function repulseForce(obstacle)
 {
 var vec = mv.translation.subtract(obstacle.position);
 var ods = obstacle.repulsion * 1.0 / Math.pow(vec.length(),power);

 return (vec.normalize()).multiply(ods);
 }

 function calcDirection()
 {
 var newDir;

 if (state == 'WANDER') {
 var r = Math.floor(Math.random() * 3.0);

 // use internal var instead of goal, and set it to goal in other
states

 var g = goal;
 g[r] += wanderInc;
 set_goal(g);
 }

 // compute force of attraction towards goal
 var gForce =
((goal.subtract(mv.translation)).normalize()).multiply(goalPriority);

 if (state == 'FLEE') {
 gForce = gForce.inverse();
 }

 // compute force of repulsion from obstacles

 var rForce = new SFVec3f(0.0,0.0,0.0);

 for (i = 0; i < obstacles.length; i++) {
 rForce = rForce.add(repulseForce(obstacles[i]));
 }

 direction = (gForce.add(rForce)).normalize();
 }

 function set_goal(val)
 {
 goal = val;
 }

 function set_obstacles(val)

17

 {
 obstacles = val;
 }

 function set_state(str)
 {
 state = str;
 }

 function update(val)
 {
 if (first) {
 first = FALSE;
 }
 else {
 var timeElapsed = val - lastBeat;

 calcDirection();
 mv.translation = mv.translation.add(direction.multiply(speed *
timeElapsed));
 }

 lastBeat = val;
 }

 "]
 }
]
 }
}

A.5. Building_1.wrl

#VRML V2.0 utf8

building_1.wrl: VRML description of building 1

author: Andrew M. Neiderer

3 September 2004

description:

notes:

18

Group {

 children [

 Shape {

 appearance Appearance {

 material Material {

 emissiveColor 1.0 0.0 0.0

 transparency 0.6

 }

 }

 geometry Box {

 size 8.0 2.0 4.0

 }

 }

]

}

A.6. MetaData.wrl

#VRML V2.0 utf8

MetaData.wrl: MetaData prototype

author: peter gerstmann

pgerstma@cgrg.ohio-state.edu

http://www.cgrg.ohio-state.edu

19

description: provides descriptive info for proto files

PROTO MetaData [

 # exposedField interface

 exposedField MFString instructions [

 " This is an externproto definition file."

 " To include, add the following in your vrml file:"

 " (click text to print to vrml console,"

 " for easy cut and paste)"

]

 exposedField MFString name []

 exposedField MFString description []

 exposedField MFString interface []

]

definition

{

 Transform {

 translation -3.75 4.5 0.0

 children [

 Transform {

 translation 0.0 0.0 0.0

 children [

 Shape {

20

 geometry Text {

 fontStyle DEF FS FontStyle {

 family ["SANS"]

 size 0.25

 }

 string IS instructions

 }

 }

]

 }

 Transform {

 translation 0.0 -1.5 0.0

 children [

 Shape {

 geometry Text {

 fontStyle FontStyle {

 family ["SANS"]

 style "BOLD"

 size 0.25

 }

 string IS name

 }

 }

]

 }

 Transform {

 translation 0.0 -2.0 0.0

21

 children [

 Shape {

 geometry Text {

 fontStyle USE FS

 string IS description

 }

 }

]

 }

 Transform {

 translation 0.0 -3.5 0.0

 children [

 DEF TS TouchSensor {}

 Shape {

 geometry DEF TXT Text {

 fontStyle FontStyle {

 family ["TYPEWRITER"]

 size 0.3

 }

 string IS interface

 }

 }

]

 }

 DEF S Script {

 directOutput TRUE

22

 field SFNode txt USE TXT

 eventIn SFBool print_isActive

 url["javascript:

 function print_isActive(itIs)

 {

 if (itIs) {

 print(' ');

 for (var i = 0; i < txt.string.length; i++) {

 print(txt.string[i]);

 }

 }

 }

 "]

 }

]

 }

 ROUTE TS.isActive TO S.print_isActive

}

NO. OF
COPIES ORGANIZATION

 23

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 INST FOR ADVNCD TCHNLGY
 THE UNIV OF TEXAS
 AT AUSTIN
 3925 W BRAKER LN STE 400
 AUSTIN TX 78759-5316

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CS IS T
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF
COPIES ORGANIZATION

 24

ABERDEEN PROVING GROUND

 8 DIR USARL
 AMSRD ARL CI CT
 P JONES
 R KASTE
 A NEIDERER (5 CPS)
 M THOMAS

